翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

sum rule in quantum mechanics : ウィキペディア英語版
sum rule in quantum mechanics

In quantum mechanics, a sum rule is a formula for transitions between energy levels, in which the sum of the transition strengths is expressed in a simple form. Sum rules are used to describe the properties of many physical systems, including solids, atoms, atomic nuclei, and nuclear constituents such as protons and neutrons.
The sum rules are derived from general principles, and are useful in situations where the behavior of individual energy levels is too complex to be described by a precise quantum-mechanical theory. In general, sum rules are derived by using Heisenberg's quantum-mechanical algebra to construct operator equalities, which are then applied to the particles or energy levels of a system.
==Derivation of sum rules〔Sanwu Wang, ''Generalization of the Thomas-Reiche-Kuhn and the Bethe sum rules'', Physical Review A 60, 262 (1999).
http://prola.aps.org/abstract/PRA/v60/i1/p262_1〕==
Assume that the Hamiltonian \hat has a complete
set of eigenfunctions |n\rangle with eigenvalues
E_n:
:
\hat |n\rangle = E_n |n\rangle.

For the Hermitian operator \hat we define the
repeated commutator \hat^ by:
:
\begin
\hat^ & \equiv \hat\\
\hat^ & \equiv (\hat ) = \hat\hat-\hat\hat\\
\hat^ & \equiv (\hat^ ), \ \ \ k=1,2,\ldots
\end

The operator \hat^ is Hermitian since \hat
is defined to be Hermitian. The operator \hat^ is
anti-Hermitian:
:
\left(\hat^\right)^\dagger = (\hat\hat)^\dagger-(\hat\hat)^\dagger
= \hat\hat - \hat\hat = -\hat^.

By induction one finds:
:
\left(\hat^\right)^\dagger = (-1)^k \hat^

and also
:
\langle m | \hat^ | n \rangle = (E_m-E_n)^k \langle m | \hat | n \rangle.

For a Hermitian operator we have
:
|\langle m | \hat | n \rangle|^2 = \langle m | \hat | n \rangle \langle m | \hat | n \rangle^\ast
= \langle m | \hat | n \rangle \langle n | \hat | m \rangle.

Using this relation we derive:
:
\begin
\langle m | (\hat^ ) | m \rangle
&= \langle m | \hat \hat^ | m \rangle - \langle m | \hat^\hat | m \rangle\\
&= \sum_n \langle m | \hat |n\rangle\langle n| \hat^ | m \rangle -
\langle m | \hat^ |n\rangle\langle n| \hat | m \rangle\\
&= \sum_n \langle m | \hat |n\rangle \langle n| \hat| m \rangle (E_n-E_m)^k -
(E_m-E_n)^k \langle m | \hat |n\rangle\langle n| \hat | m \rangle \\
&= \sum_n (1-(-1)^k) (E_n-E_m)^k |\langle m | \hat | n \rangle|^2.
\end

The result can be written as
:
\langle m | (\hat^ ) | m \rangle =
\begin
0, & \mboxk\mbox \\
2 \sum_n (E_n-E_m)^k |\langle m | \hat | n \rangle|^2, & \mboxk\mbox.
\end

For k=1 this gives:
:
\langle m | [\hat, [\hat,\hat]] | m \rangle =
2 \sum_n (E_n-E_m) |\langle m | \hat | n \rangle|^2.

==Example==
See oscillator strength.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「sum rule in quantum mechanics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.